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Sensing magnetic fields with quantum probes

= Quantum probes sense magnetic fields with high sensitivity and spatial resolution.
= Systematic methods for measuring other than static or oscillating magnetic fields are needed.
= Spectral analysis in the Fourier domain suffers from drawbacks:

= Quantum filters are naturally digital

" Spectral reconstruction requires functional approximations or deconvolution algorithms.

Novel method for measuring time-varying magnetic fields

* We reconstruct the arbrtrary temporal profile of time-varying fields using VWalsh functions
* We characterize the performance of the method in term of reconstruction error and sensitivity

* We discuss applications to neuronal activity imaging

Our quantum probe is the nitrogen-vacancy center in diamond

= Color defect in the diamond lattice consisting of a vacancy
adjacent to a substrtutional nitrogen atom impurity

* Collection of emitted fluorescence (600-800 nm)
via confocal microscopy

600-800nm

» (Ground-state electronic spin-1 with good visibility
and coherence properties at room temperature.

Control of spin properties at room temperature

= Optical inttialization and spin-state readout
via confocal microscopy.

= Coherent control via coherent irradiation
with microwave pulses.

= Applications in metrology and
quantum information

Amplitude estimation of constant field

= Ramsey interferometry (d.c. magnetometry): measure the shift in the resonance
frequency of a qubit interacting with an external field along its quantization axis.
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Amplitude estimation of oscillating field

= a.c. magnetometry: apply control m-pulses to synchronize the evolution
of the qubit sensor with the time-varying field.
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Walsh reconstruction method [, 2]

» Complete orthonormal basis of digital filters {w,,,(t/T)}
= Contain known dynamical decoupling sequences (CPMG, PDD)
" Extract information while suppressing noise  w,(%)
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(1) Modulate with m-th Walsh sequence w,, (t/T) to extract the m-th Walsh coefficient b(m):

Walsh transform of b(t) evaluated at sequency m:

O (T)/YT =~ [ () (t/T)dt = b(m).

(2) Reconstruct the field from a set of N Walsh coefficients via inverse VValsh transtorm

N—1
by(0) = ) B (t/T).
m=0

Performance of the Walsh reconstruction method

* Bounded reconstruction error vanishing for finite number of coefficients
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= Quantifiable measurement sensitivity of the m-th Walsh sequence
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The signal visibility is v,,, = (e‘T/TZ(m))p(m)vvith T,(m) > T, (noise suppression)
* Trade-off between noise suppression and spectral information extraction
(m): Intrinsic sensitivity of the magnetometer in the presence of noise
|f (m)|: Walsh coefficient of the field measured with the m-th Walsh sequence

* Parameter estimation of time-varying fields or arbitrary waveform magnetometry
(a. w. magnetometry) by choosing w,,, that minimizes 1,

= Quantifiable measurement sensitivity of the VWalsh reconstruction method
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= Gain in sensitivity greater than VN over sequential acquisition techniques (Ramsey)
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Data compression and compressed sensing

* Reduction in total acquisition time by discarding negligible coefficients [2]
= Quantifiable increase In reconstruction error due to truncation of few coefficients

» Compressed sensing for S-sparse signals provides logarithmic scaling in resources | 3]
N — Slog,(N)
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Reconstruction of arbitrary polychromatic fields

= Walsh transform is linear, i.e, b(t) = X; sin(vajt + aj) = b(m) = 2. Bj (m).
* Walsh method outperforms reconstruction with incomplete sets of filters (CPMG, PDD).
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Figure 2 | 32-point reconstruction of a bichromatic field. a, Measured Walsh spectrum up to fifth order
(N=2°). b, The reconstructed field (filled squares) is a 32-point approximation to the expected field (solid

line, not a fit). ¢, The Walsh method outperforms the reconstruction with incomplete sets of filters such as
PDD and CPMG sequences.

Reconstruction of simulated neuronal action potential fields

* Simulated action potential (NEURON) of a rat hippocampal mossy fiber bouton approximated
by a skew normal impulse.
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Figure 3 | 32-point reconstruction of a magnetic field radiated by a skewed normal impulse flowing
through the physical model of a neuron. a, Measured Walsh spectrum up to fifth order (N=2>). The
Walsh coefficients were obtained by fixing the amplitude of the field and sweeping the phase of the last
read-out pulse. b. The reconstructed field (filled squares) is a 32-point approximation to the expected
fleld (solid line, not a fit).
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