Algorithms for a Scalable Quantum Computer
 Optimal Pulse Sequences, Montgomery Factoring, and Bayesian Inference

IIIIT

Guang Hao Low, Rich Rines, Theodore Yoder, Isaac Chuang

ATMIT

Introduction

Quantum computers promise speedups to a whole host of classical algorithms, from exponential advantage in factoring to a plethora of polynomial advantages in machine learning tasks. However, as the size of the problem grows, the quantum circuit required to solve it also grows, and small errors in single gates add to have a substantial effect on the output. Scaling up a quantum computer therefore requires either simplifying the circuits or reducing errors. To that end, we present open-loop error correction for single-qubit gates in the form of pulse error correction for single-qubit gates in the form of pulse
sequences of optimal length. We also show how to reduce the circuit for Shor's algorithm using the Montgomery product from number theory, bringing the factoring of 35 within experimental grasp. Finally, we demonstrate how a Bayesian inference task can be performed with polynomial advantage on a scalable quantum computer.

Optimal Pulse Sequences

Say that we wish to perform a single-qubit rotation $R_{\phi}[\theta]$ by angle θ around the axis $\sigma_{\phi}=X \cos \phi+Y \sin \phi$ but we only have access to a faulty operation $M_{\phi}[\theta]=R_{\phi}[\theta(1+\epsilon)]$ which over- or under-rotates by a factor ϵ. In the presence of these amplitude errors, how can we still perform $R_{\phi}[\theta]$ accurately?

The answer comes from the non-commutativity of single-qubit operations which allows us to chain faulty pulses in sequence such that

$$
\begin{equation*}
U_{0}[\theta]=\prod_{i=1}^{L} M_{\varphi_{j}}\left[\theta_{0}\right] \cdot M_{0}[\theta]=R_{0}[\theta]+\mathcal{O}\left(\epsilon^{n+1}\right) \tag{1}
\end{equation*}
$$

The dependence of L on n that is implicit in this equation is crucial. We prove that $L>n$ and argue that $L=2 n$ is achievable. This is in contrast to the next best sequences for arbitrary $\gamma \equiv \theta / 2 \pi$, which scale as $L=\mathcal{O}\left(n^{3.09}\right)$ [1].

Figure 1: We compare the transition probability $\left.p=\left|\langle 0| U_{0}[\pi]\right| 1\right\rangle\left.\right|^{2}$ effected by pulse sequences with amplitude error ϵ in the cases of length $L=9$ (blue) and also $L=25$ (red). Included are BB4, 12 of this work,
Shaka's Δ_{2}, Cho's C_{9}, Husain's F_{2}, and Tycko's S_{2}.

Our sequences are obtained algebraically by expanding (1). We make the assumption $\theta_{0}=2 \pi$ to dramatically simplify the result The resulting n complex equations to be solved for $\vec{\varphi}$ are

$$
\Phi_{L}^{j}(\vec{\varphi})=f_{L}^{j}(\gamma), \quad j=1, \ldots, n
$$

where
$\Phi_{L}^{j}(\vec{\varphi})=\sum_{\left\{h_{k}\right\}}{ }^{\prime} \exp \left(-i \sum_{k=1}^{j}(-1)^{k} \varphi_{h_{k}}\right), f_{L}^{j}(\gamma)=\sum_{k=0}^{j}(-1)^{k}\binom{T}{k}\binom{L-T}{j-k}$
The primed sum enforces $1 \leq h_{1}<\cdots<h_{j} \leq L$ and $T=(\gamma+L) / 2$.

Bayesian Inference

Say that we have a probability distribution $P(\vec{x})$ on n binary variables. After observing some set of evidence variables $\mathcal{E}=e$ how can we sample from $P(\mathcal{Q} \mid e)$ for a set of query variables? Such sampling allows us to perform approximate inference, inferring the most likely values of \mathcal{Q} given e by evaluating $\operatorname{argmax}_{\mathcal{Q}} P(\mathcal{Q} \mid e)$.

$$
P(\vec{x})=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}\right) P\left(x_{4} \mid x_{1}, x_{3}\right)
$$

(3)

Solving for Sequences

The symmetries $\vec{\varphi}=\vec{\varphi}_{R}\left(\vec{\varphi}=-\vec{\varphi}_{R}\right)$ result in $\operatorname{Im} \Phi_{L}^{j}(\vec{\varphi})=0$ for j even (odd) and the resulting sequences are called initialed PD (AP). All such sequences have $L=2 n$.

We introduce three techniques for solving (2):
Analytical: The substitution $t_{k}=\tan \left(\phi_{k} / 2\right)$ converts (2) into a system of polynomial equations, which can be solved by Groebner bases to yield AP1, 2, 3 and PD2, 4.
Perturbative: Given a solution at γ_{0} and nonzero Jacobian $\left.\frac{\partial}{\partial \varphi_{k}} \Phi_{L}^{j}\right|_{\gamma_{0}}$ solutions $\varphi(\gamma)$ for $\gamma \approx \gamma_{0}$ can be obtained. For a certain AP sequence ToP, $\varphi_{k}^{\text {ToP }}(0)=\pi$ and we prove a nonzero Jacobian at 0 . Numerical: We use Mathematica [2] to find roots to equation (2) up to $n=12$.

Name	Length	Notes
SCROFULOUS	3	$n=1$, non-uniform $\theta_{j}[9]$
Pn, Bn	$\mathcal{O}\left(e^{n^{2}}\right)$	Closed-form [5]
SKn	$\mathcal{O}\left(n^{3}\right)$	$n \leq 30$, numerical [5] $n>30$, conjectured
$\mathrm{AP} n(\mathrm{PD} n)$	$2 n$	$\begin{aligned} & n \leq 3(4) \text {, closed-form } \\ & n \leq 12, \text { analytic continuation } \\ & n>12, \text { conjectured } \end{aligned}$
$\overline{\mathrm{ToP} n}$	$2 n$	arbitrary n, perturbative

Montgomery Factoring

Repeated application of the controlled modular product operation, $|x\rangle \longrightarrow\left|a^{2^{k}} x \bmod N\right\rangle$,
represents the computational bottleneck of Shor's algorithm. Montgomery reduction is a commonly used classical computational technique for efficient modular exponentiation under a large modulus, reducing the algorithmic complexity of modular reduction by division to that of multiplication

$$
\begin{aligned}
\text { Given: } T & =x y<N R \\
N^{\prime} & :=-N^{-1} \bmod R \\
U & :=T N^{\prime} \bmod R \\
(T+U N) / R & \equiv T R^{-1} \quad(\bmod N)
\end{aligned}
$$

$$
(T+U N) / R<2 N
$$

The classical advantage of Montgomery reduction results from the ability to implicitly calculate U with no computational overhead Unfortunately, this implicit calculation is not immediately reversible mitigating the advantage of Montgomery reduction when naively adapted to quantum modular exponentiation

Remarkably, we can reclaim the algorithmic advantage by adapting to a uniquely quantum mechanical arithmetic model acting in quantum Fourier space. The resulting multiplier provides a unique scalable building block for constructing Shor's circuits:

Multiplication Method

$\begin{array}{ll}\text { Depth Gates } \quad \text { Qubits } \\ \mathcal{O}(n) & 12 n^{2}+3 n+6\end{array}$
Fourier Montgomery
Shift-and-Add [4]
$\begin{array}{lll}\mathcal{O}\left(n^{2}\right) & 24 n^{2}+\mathcal{O}(n) & 2 n \\ \mathcal{O}\left(n^{2}\right) & 2 n^{3}+\mathcal{O}\left(n^{2}\right) & 3 n\end{array}$
Fourier Shift-and-Add, Draper [5]
$\mathcal{O}\left(n^{2}\right) 2 n^{3}+\mathcal{O}\left(n^{2}\right) 3 n$
Fourier Shift-and-Add, Beauregard [6] $\mathcal{O}\left(n^{3}\right) 2 n^{3}+\mathcal{O}\left(n^{2}\right) 2 n+2$

Small circuit width and small lower-order terms in the circuit depth and gate count make the Fourier Montgomery method immediately applicable to foreseeable factoring experiments, such as $N=35$

Bibliography

1. Ken Brown, Aram Harrow, Isaac Chuang, Phys. Rev. A 70, 052318 (2004)
2. Wolfram Research Inc., Mathematica, Version 9.0 Champaign, IL (2012).
3. Dorit Aharonov, Amnon Ta-Shma, STOC '03, ACM, pp. 20-29 (2003).
4. Christof Zalka, arXiv:quant-ph/9806084 (1998)
5. Thomas Draper, arXiv:quant-ph/0008033 (2000)
6. Stephane Beauregard, arXiv:quant-ph/0205095 (2003)

The authors acknowledge the support of the NSF CUA, NSF iQuISE IGERT, IARPA QCS ORAQL, and NSF CCF-RQCC projects.

