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Optimal Pulse Sequences, Montgomery Factoring, and Bayesian Inference
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Introduction

Quantum computers promise speedups to a whole host of
classical algorithms, from exponential advantage in factoring to
a plethora of polynomial advantages in machine learning tasks.
However, as the size of the problem grows, the quantum circuit
required to solve it also grows, and small errors in single gates
add to have a substantial effect on the output. Scaling up a
quantum computer therefore requires either simplifying the
circuits or reducing errors. To that end, we present open-loop
error correction for single-qubit gates in the form of pulse
sequences of optimal length. We also show how to reduce the
circuit for Shor’s algorithm using the Montgomery product from
number theory, bringing the factoring of 35 within experimental
grasp. Finally, we demonstrate how a Bayesian inference task
can be performed with polynomial advantage on a scalable

-

quantum computer.
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Optimal Pulse Sequences

Say that we wish to perform a single-qubit rotation R 4[6| by

angle 6 around the axis 04 = X cos ¢ + Y sin ¢ but we only
have access to a faulty operation M, |0] = R,[0(1 + €)] which
over- or under-rotates by a factor €. In the presence of these
amplitude errors, how can we still perform R4 |0] accurately?

The answer comes from the non-commutativity of single-qubit
operations which allows us to chain faulty pulses in sequence
such that T,

Uolf] = | | My, [60] -Mo[0] = Ro[6] + O(e" ™). (1)
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The dependence of [, on n that is implicit in this equation is
crucial. We prove that L > n and argue that L = 2n is
achievable. This is in contrast to the next best sequences for
arbitrary v = 0 /27, which scale as L = O(n>%)[1].
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Figure 1: We compare the transition probability p = |(0|Up[n]|1)|* effected by
pulse sequences with amplitude error € in the cases of length L = 9 (blue) and
also L = 25 (red). Included are BB4,12 of this work, Vitanov’s V3 24,

Shaka’s Ay, Cho's Cg, Husain’s F5, and Tycko’s S5 .

Our sequences are obtained algebraically by expanding (1). We
make the assumption 6y = 27 to dramatically simplify the result.
The resulting n complex equations to be solved for ¢ are

(@) =fL(v), j=1L....n (2)
where | j ™ /T T
J : —
(@) = > "exp ( <1>%hk> FL() = Z(_m(k) ( . k)
{hk} k=1 k=0 J
The primed sum enforces1 < h; <---<h; <LandT = (y+ L)/2.

Bayesian Inference

Say that we have a probability distribution P() on n binary
variables. After observing some set of evidence variables £ = e how
can we sample from P(Q)|e) for a set of query variables? Such
sampling allows us to perform approximate inference, inferring the
most likely values of Q) given e by evaluating argmax o P(Q|e).

P(x) = P(x1)P(x2|x1)P(x3|x1)P(z4|T1, 3) (3)

Figure 2: (Left) A Bayes net is a directed acyclic graph
with 1 nodes and maximum indegree 1 showing the
conditional dependences of random variables of a
probability distribution P(Z) (Eq.(3)). With each node is
stored a table of probabilities. Sampling nodes top to
bottom, gives a sample of P (%) in time O(nm).
(Below) Classical rejection sampling takes /N samples
from P () and rejects those with incorrect evidence
E = e. Since the correct evidence only appears with
probability P(e), if we desire one sample from the
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Classical Rejection Sampling

post-select
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Figure 3: (Right) This circuit prepares the g-

sample |1/ p ) based on the structure of the 21 |0)— U ~

Bayes net in Fig. 2. Once compiled, the circuit 1 % Z Z

complexity is O(n2"). (Below) The quantum '

rejection sampling algorithm produces one L2 ’O> U2 ‘w >
sample of P(Q|e)per g-sample prepared. It — VP
does so by e(nh‘an)cing the component of |{Vp) T3 |0) ———— U3 —(—

that has the correct evidence |e) using

amplitude amplification. This effectively X4 ]O} - U4 L

speeds up the classical post-selection by a -

square-root. Quantum Rejection Sampling
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Solving for Sequences

The symmetries § = @r (§ = —@r ) result in Im®”, () = 0 for j
even (odd) and the resulting sequences are called initialed PD (AP).
All such sequences have L = 2n.

We introduce three techniques for solving (2):

» Analytical: The substitution ¢, = tan(¢x/2) converts (2) into a
system of polynomial equations, which can be solved by Groebner
bases to yield AP1,2,3 and PD2, 4. 95
Perturbative: Given a solution at~yand nonzero Jacobian a—%q’i}%

solutions ¢ () for v = v can be obtained. For a certain AP

sequence ToP, ¢ °"(0) = 7 and we prove a nonzero Jacobian at 0.

Numerical: We use Mathematica [2] to find roots to equation (2) up
ton = 12.

Name Length Notes
SCROFULOUS 3  n =1, non-uniform 6; [9]
Pn, Bn O(e™") Closed-form [5]
5y 1 < 30, numerical [5]
Skn O(n’) n > 30, conjectured
n < 3(4), closed-form
n < 12, analytic continuation
n > 12, conjectured
ToPn 2n  arbitrary mn, perturbative

APn (PDn)

Table |I: Summary of existing pulse sequences and our optimal
sequences AP, PD, and ToP.
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/Montgomery Factorin;

Repeated application of the controlled modular product operation,
z) — |a2  mod N), (5)

represents the computational bottleneck of Shor’s algorithm.
Montgomery reduction is a commonly used classical computational
technique for efficient modular exponentiation under a large
modulus, reducing the algorithmic complexity of modular reduction
by division to that of multiplication:

Given: T'=zy < NR
N :=—-N"1'mod R
U:=TN modR
(T+UN)/R=TR™' (mod N)
(T'+UN)/R < 2N

he classical advantage of Montgomery reduction results from the
ability to implicitly calculate U with no computational overhead.
Unfortunately, this implicit calculation is not immediately reversible,
mitigating the advantage of Montgomery reduction when naively
adapted to quantum modular exponentiation.

Remarkably, we can reclaim the algorithmic advantage by adapting
to a uniquely quantum mechanical arithmetic model acting In
qguantum Fourier space. The resulting multiplier provides a unique
scalable building block for constructing Shor’s circuits:

Multiplication Method Depth Gates Qubits
Fourier Montgomery O (n) 12n° +3n+6 2n + 2
Shift-and-Add [4] O (n?) 24n*+O(n) 2n+ 0O (1)
Fourier Shift-and-Add, Draper [5] O (n2) 2n° + O (nz) 3n
Fourier Shift-and-Add, Beauregard [6] O (n?’) 2n° + O (nz) 2n + 2

Small circuit width and small lower-order terms in the circuit depth
and gate count make the Fourier Montgomery method immediately
applicable to foreseeable factoring experiments, such as N = 35.
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