
www.postersession.com 

The primed sum enforces                                   and                         . 

Methods 

Bayesian Inference 

Algorithms for a Scalable Quantum Computer 
Optimal Pulse Sequences, Montgomery Factoring, and Bayesian Inference 

 
Guang Hao Low,  Rich Rines, Theodore Yoder, Isaac Chuang 

Bibliography 

Introduction Montgomery Factoring 
Quantum computers promise speedups to a whole host of 
classical algorithms, from exponential advantage in factoring to 
a plethora of polynomial advantages in machine learning tasks. 
However, as the size of the problem grows, the quantum circuit 
required to solve it also grows, and small errors in single gates 
add to have a substantial effect on the output. Scaling up a 
quantum computer therefore requires either simplifying the 
circuits or reducing errors. To that end, we present open-loop 
error correction for single-qubit gates in the form of pulse 
sequences of optimal length. We also show how to reduce the 
circuit for Shor’s algorithm using the Montgomery product from 
number theory, bringing the factoring of 35 within experimental 
grasp. Finally, we demonstrate how a Bayesian inference task 
can be performed with polynomial advantage on a scalable 
quantum computer. 

Optimal Pulse Sequences 

✏
Figure 1: We compare the transition probability                                effected by 
pulse sequences with amplitude error    in the cases of length           (blue) and 
also              (red). Included are               of this work, Vitanov’s          , 
Shaka’s      , Cho’s      , Husain’s      , and Tycko’s      . 
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Say that we wish to perform a single-qubit rotation           by 
angle    around the axis                                        but we only 
have access to a faulty operation                                  which 
over- or under-rotates by a factor   . In the presence of these 
amplitude errors, how can we still perform           accurately? 
 
The answer comes from the non-commutativity of single-qubit 
operations which allows us to chain faulty pulses in sequence 
such that 
 
 
 
 
The dependence of     on     that is implicit in this equation is 
crucial. We prove that             and argue that               is 
achievable. This is in contrast to the next best sequences for 
arbitrary                 , which scale as                       [1]. 
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Our sequences are obtained algebraically by expanding (1). We 
make the assumption                to dramatically simplify the result. 
The resulting    complex equations to be solved for     are     
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Solving for Sequences 
The symmetries               (                 ) result in                        for 
even (odd) and the resulting sequences are called initialed PD (AP). 
All such sequences have             . 
 
We introduce three techniques for solving (2): 
 

•  Analytical: The substitution                            converts (2) into a 
system of polynomial equations, which can be solved by Groebner 
bases to yield                 and            . 

•  Perturbative: Given a solution at     and nonzero Jacobian 
solutions         for             can be obtained. For a certain AP  
sequence ToP,                    and we prove a nonzero Jacobian at 0. 

•  Numerical: We use Mathematica [2] to find roots to equation (2) up 
to             . 
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a pulse sequence S consisting of L faulty pulses M
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which are our free parameters. Leaving each amplitude ✓
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as a free parameter (e.g. SCROFULOUS [9]) may help
reduce sequence length, but we find that a fixed value
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II. PULSE SEQUENCE CONSTRAINT
EQUATIONS

We now proceed to derive a set of equations, or con-
straints, on the phase angles ~' that will yield broadband
correction. To begin, we obtain an algebraic expression
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ing ✓0

0

= (1 + ✏)✓
0

/2,

S =
LY

j=1

M
'j [✓0] = cosL (✓0

0

)
LY

j=1

�
1� i tan (✓0

0

) �̂
'j

�
(2)

=
LX

j=0

Aj

L

(✓0
0

) �̂j

L

(~'),

where indices in the matrix product ascend from left to
right, Aj

L

(s) = (�i)j sinj (s) cosL�j (s), and �̂j

L

are non-
commutative elementary symmetric functions generated
by
Q

L

j=1

�
1 + t�̂

'j

�
=
P

L

j=0

tj�̂j

L

[15]. The �̂j

L

are hard
to work with so by applying the Pauli matrix identity

�
'1�'2 . . .�'j = exp

 
iẐ
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By defining the terminal case �0
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Combining the expansion of S with Eq. (1) then im-

Name Length Notes

SCROFULOUS 3 n = 1, non-uniform ✓
j

[9]

Pn, Bn O(en
2
) Closed-form [5]

SKn O(n3)
n  30, numerical [5]
n > 30, conjectured

APn (PDn) 2n
n  3(4), closed-form
n  12, analytic continuation
n > 12, conjectured

ToPn 2n arbitrary n, perturbative

TABLE I: Comparison of known pulse sequences operating on
arbitrary initial states that suppress systematic amplitude er-
rors to order n for arbitrary target rotation angles. Arbitrary
accuracy generalizations are known or conjectured for all with
the exception of SCROFULOUS. The sequences APn, PDn,
and ToPn are presented in this work. Of interest is the subset
of APn sequences labeled ToPn for which arbitrary accuracy
is provable perturbatively for small target angles.
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Second, the complex coe�cients of x0, x1, . . . , xn are
matched, giving 2(n+1) complex equations linear in the
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sidered separately. We give more detail on toggling in
Section IV.

A. Assuming base pulses of ✓0 = 2⇡

We now enumerate several key results, due simply to
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Table I: Summary of existing pulse sequences and our optimal 
sequences AP, PD, and ToP. 
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Say that we have a probability distribution          on    binary 
variables. After observing some set of evidence variables            how 
can we sample from              for a set of query variables? Such 
sampling allows us to perform approximate inference, inferring the 
most likely values of     given    by evaluating                          . 
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Figure 2: (Left) A Bayes net is a directed acyclic graph 
with     nodes and maximum indegree      showing the 
conditional dependences of random variables of a 
probability distribution          (Eq.(3)). With each node is 
stored a table of probabilities. Sampling nodes top to 
bottom, gives a sample of          in time              .  

n m
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(Below) Classical rejection sampling takes     samples 
from          and rejects those with incorrect evidence 
`         . Since the correct evidence only appears with 
probability         , if we desire one sample from the 
posterior               we must set                               and 
take                          time. 
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Figure 3: (Right) This circuit prepares the q-
sample          based on the structure of the 
Bayes net in Fig. 2. Once compiled, the circuit 
complexity is                . (Below) The quantum 
rejection sampling algorithm produces one 
sample of              per q-sample prepared. It 
does so by enhancing the component of          
that has the correct evidence      using 
amplitude amplification. This effectively 
speeds up the classical post-selection by a 
square-root. 
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Repeated application of the controlled modular product operation,  
 
 
represents the computational bottleneck of Shor’s algorithm.  
Montgomery reduction is a commonly used classical computational 
technique for efficient modular exponentiation under a large 
modulus, reducing the algorithmic complexity of modular reduction 
by division to that of multiplication: 
 
 
 
 
 
 
 
 
The classical advantage of Montgomery reduction results from the 
ability to implicitly calculate U with no computational overhead.  
Unfortunately, this implicit calculation is not immediately reversible, 
mitigating the advantage of Montgomery reduction when naively 
adapted to quantum modular exponentiation. 
 
Remarkably, we can reclaim the algorithmic advantage by adapting 
to a uniquely quantum mechanical arithmetic model acting in 
quantum Fourier space.  The resulting multiplier provides a unique 
scalable building block for constructing Shor’s circuits: 
 
 
 
 
 
 
 
 
Small circuit width and small lower-order terms in the circuit depth 
and gate count make the Fourier Montgomery method immediately 
applicable to foreseeable factoring experiments, such as N = 35. 
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Multiplication Method Gate Count Parallelized Depth Qubits 3-Qubit Gates

QFMP, Simplea 10n2 � 9n+ 2 O (n) 2n 3n

QFMP, General 12n2 + 3n+ 6 O (n) 2n+ 2 3n

Quantum Montgomery, Generalb 18n2 +O (n) O �
n

2
�

3n+O (1) O �
n

2
�

S+A, Ripple-Carry Addersc [18] [12] 24n2 +O (n) O �
n

2
�

2n+O (1) O �
n

2
�

S+A, QFT Adders [4] [2] 2n3 +O �
n

2
� O �

n

2
�

2n+ 2 0

Zalka/Kutind [18] [6] 2n2 +O (n log2 n) O (n) 3n+O (log2 n) 0
a
For the QFMP circuit costs, some deterministic optimizations were made, such as combining sequential controlled rotations with the

same control and target qubits

b
For n-bit binary arithmetic circuits, we assume a circuit size of 6n for non-modular addition and 3n for non-modular addition of a

constant

c
Binary modular addition of a constant for shift-and-add (S+A) multiplication is assumed to have the circuit cost four non-modular

constant additions.

d
The Zalka/Kutin method is an approximate multiplication circuit.

TABLE I: Circuit characteristics of various multiplication procedures. Gate counts and depths are measured in total number
of multi-qubit gates.

Multiplication Method Depth Gates Qubits

Fourier Montgomery O (n) 12n2 + 3n+ 6 2n+ 2

Shift-and-Add [4] O �
n

2
�

24n2 +O (n) 2n+O (1)

Fourier Shift-and-Add, Draper [5] O �
n

2
�

2n3 +O �
n

2
�

3n

Fourier Shift-and-Add, Beauregard [6] O �
n

3
�

2n3 +O �
n

2
�

2n+ 2

VIII. CONCLUSIONS

The overall QFMP operation performs Montgomery modular multiplication with linear circuit depth and a circuit
width of 2n+ 2 qubits. For the uncontrolled operator, no three-qubit gates are required; however 3n will be required
for the controllable version required for modular exponentiation. Further, small constant terms in the circuit size and
depth, a low quadratic gate count, and the ability to perform Montgomeryization within classical precomputation,
allows the computational advantage of the operator to exist both asymptotically and for small N . This immediately
introduces opportunities for quantum factoring circuits.

We notice that, in practice, the QFMP operation will likely be more e�cient than the version presented here. First,
as all of our operations are wrapped up in Fourier rotations, we note that for larger N we can approximate rotation
angles to greatly reduce circuit size with little change in the experimental output [1]. We also notice that the Fredkin
gates required to make the QFMP controllable are acting on a subset of the possible Hilbert space of three qubits. For
instance, one of the three qubits input to the initial Fredkin gates is deterministically in the |0i state. This introduces
the opportunity for hardware-specific optimization, including potentially breaking the operation into two-body gates.
These optimizations are very specific to the particular implementation of the QFMP operation, and therefore are not
thoroughly explored here.
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