
�e standard approach to time-optimal control 
usually involves geometrical and variational   
methods. Such methods either fail or become   
convoluted in the case of alternating controls.

Using accessible algebraic methods, we obtain 
general results for the time-optimal generation of 
unitaries in SU(2) using alternating controls from 
a set {A, B} that generates the whole space:

Ugoal = A(tn) B(tn-1) A(tn-2) . . . B(t3) A(t2) A(t1) 

�e evolution of the system towards Ugoal is then 
understood as consecutive rotations around two 
non-parallel axes in the Bloch sphere. Our task is 
to determine the length and the times of the 
time-optimal decomposition of Ugoal. Here,     
time-optimality is the only criterium for             
optimization, although others exist (ex: minimum 
number of control pulses).

  If the gto is �nite, we can bound 
the length of the time-optimal     
sequence according to the           
relationship between tm and α. 
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If the gto for Ugoal is �nite, then tm > π [1]. 

We have additionally concluded that:

  Given any Ugoal in SU(2), we can determine the 
minimum number of control concatenations, κ,   
necessary to synthesize Ugoal. 

  If the best n-long decomposition of Ugoal, n ≥ κ, 
has tm < π (ie, is not a gto-candidate), the gto 
must be (n+1), (n+3) or in�nitely long.

  If the best n-long decomposition of Ugoal, n ≥ κ, 
has tm > π (ie, is a gto-candidate), the gto must be 
n, (n+1), (n+2), . . . , ⌈(3n/2)+3⌉ or in�nitely long.
(Conjecture: shortest gto-candidate is indeed gto!)

 If an in�nite decomposition of Ugoal exists, a       
sequence n-long, with n ≥ (6 + 2/cos(α/2)), can 
never be gto (in�nite sequence performs better).
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Case t ∈ [0,2π]: bounds on length and times of time-optimal decomposition  

Time-optimal control with algebraic methods: the case of alternating controls

Numerical simulations indicate that the time       
improvement brought by in�nite gto-sequences is 
usually very small, and we are currently            
analytically investigating this quantity. 

Also of current interest is the generalization of our 
formalism for di�erent rotation speeds.
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Time-optimal control theory studies the task of 
steering a dynamical system towards some goal 
state in minumum time, while obeying some     
constraints: X(t) = AX(t) + Bu(t), with |u(t)| ≤ 1.

In NMR-like systems, phase/amplitude modulation 
of the excitation �elds allows u(t) to vary in [-1,1]. 
Nevertheless, in some experimental settings, it is 
either hard to modulate the �elds (ex: ion traps 
with laser controls), or the control degrees of  
freedom are restricted (ex: evolution of nuclear 
spin coupled to the electronic NV-center spin: the 
driving of the NV between the ms = {1,0} states 
turns hyper�ne on/o�). In these cases, the control 
is constraint to alternate: u(t) = ±1.
                                          
                                        α ∈ [0,π]
                                        AX(t) + B ≡ A  
                                        AX(t) - B ≡ B
  u(t) ∈ [-1,1]         u(t) = ±1
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Extend the number of controls in a     
sequence, while reducing the total time: 
it is always possible to �nd 
Ugoal = A(t3) B(t2) A(t1)                    
      = A(t3-ε) B(τ) A(µ) B(τ) A(t1-ε) ; 
total times shorter in the blue region

Toolbox and tricks 
We use a myriad of algebraic tricks to �nd the time-optimal 
decomposition of a given unitary, some of which are below:

 

Alternative decompositions of the same unitary:  
Ugoal = A(t3) B(t2) A(t1) = A(t3-t*) B(2π-t2) A(t1-t*) , 
with t* = 2 arccot(cos(α) tan(t2/2))

Variational principle for time-optimal sequences:
Ugoal = A(tn) . . . B(t3) A(t2) B(t1) is time optimal i�
Ugoal + dUgoal ≈ Ugoal= A(tn+εn) . . . A(t2+ε2) B(t1+ε1) ,
for small perturbations εi; yields the important result that 
internal times must be equal in magnitude [1]: 
|t2| = |t3| = . . . =|tn-1| ≡ |tm|

Case t ∈ [-π,π]: shape of time-optimal solution 

We now know that, if the globally time-optimal (gto)         
sequence is �nite, the signs of the middle times follow: 

. . . A(+tm)  B(+tm) A(-tm)  B(-tm) . . .

. . . A(-tm)  B(-tm) A(+tm)  B(+tm) . . .

. . . A(+tm)  B(-tm) A(-tm)  B(+tm) . . .

. . . A(-tm)  B(+tm) A(+tm)  B(-tm) . . .

Conversely, if the gto sequence is in�nite, tm→0, with signs:

. . . A(+tm)  B(+tm) A(+tm)  B(+tm) . . .
. . . A(-tm)  B(-tm) A(-tm)  B(-tm) . . .
. . . A(+tm)  B(-tm) A(+tm)  B(-tm) . . .
. . . A(-tm)  B(+tm) A(-tm)  B(+tm) . . .

Not a lot [2] was known in the case 
where rotations can be made in both 
clock- and anti-clockwise directions, 
besides the fact that all times in the 
time-optimal decomposition must be    
t ∈ [-π,π].  
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Note that, for α ≥ π/2, the gto
is either 3 or in�nitely long! 

α
B A

α
B

A

α
A

B


