# **Towards a Quantum Gas Microscope for Fermions**

Lawrence Cheuk, Vinay Ramasesh, Melih Okan, Matthew Nichols, Waseem S. Bakr, Thomas Lompe and Martin W. Zwierlein Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139, USA

# **Ultracold Fermi Gases: a Model** System

**Strongly-correlated electronic systems** Technologically important, poorly understood







**Spintronic devices** 

Ultracold atomic gases can simulate strongly correlated electronic physics in a controllable manner.



**Atoms in Optical Lattices** 



**Condensed Matter Systems** 

# **Goal: Single-site Imaging of Fermions in a Optical Lattice**

A high-resolution imaging system allows detection of fermionic atoms on individual lattice sites.

### Single-site Resolution

- Direct imaging of fluctuations and correlation functions
- Engineering arbitrary lattice geometries
- Single-site addressing
- New, "algorithmic" cooling schemes



Previous work at Harvard and Munich has achieved single-site detection for bosonic atoms.



Bakr et al., Nature 462, 74-77 (2009)



Increasing atom number Sherson et al., Nature 467, 68-71 (2010)

Matter is made of fermions  $\rightarrow$  a fermion microscope!









Hadzibabic *et al.*, Nature 441, 1118 (2006)

The microscope may allow in-situ observation of BKT phase transition: dissociation of vortex pairs above the transition temperature.



q/Qq/Q Cheuk *et al.*, arXiv:1205:3483 (2012) Previous work: Wang *et al.*, arXiv: 1204:1887 (2012)

2 -2

Raman coupling can be used to engineer synthetic magnetic fields

Possible goals: Explore quantum hall physics and topological insulators with a fermi gas microscope.

# **Reduced Dimensionality**

A quantum gas microscope provides the natural playground for studying strongly interacting fermions in a single 2D plane thermal and quantum fluctuations play an enhanced role.



Proliferation of free vortices

# **Novel Features of our Experiment Design**

### Zeeman Slower and 3D MOT for <sup>23</sup>Na



#### Atoms being transported under the microscope (seen from the side)

Hybrid trap under the microscope





#### Kapitza-Dirac Calibration of our optical lattice





Top View: The 3D MOT laser beams (red) and a quadrupole magnetic trap (green) are centered around the 3D-MOT position. The center of the threedimensional optical lattice is in the center of the imaging axis.

> **Rayleigh criterion for** optical resolution 1.22  $\lambda$  0.61  $\lambda$  $2 n \sin(\theta)$

"Solid Immersion" effect enhances NA by a factor of 1.54

## **Experiment Status**

Vacuum windo

Microscope

objective



Plugged Quadrupole Trap



Sodium BEC created under the microscope via evaporation in our hybrid trap (seen from the top)



Coming up...

- Load fermions into the optical lattice
- Single-site Imaging!