
•   The standard  quantum limit (SQL) for measurements based on 
atomic coherent states leads to uncertainties scaling with atom 
number N as 1/√N, due to atomic projection noise 

•   Entangled states of atomic ensembles can be used to reduce 
projection noise, potentially reaching the Heisenberg limit with 
uncertainties scaling as 1/N [1] 

•   So far, measurements below the SQL have been achieved via 
squeezed spin states, produced by nonlinear interactions or via 
measurement by a probe beam strongly coupled to the ensemble [2]  

•   Here, we propose a novel scheme to produce entangled, non-
Gaussian states by detection of a single photon  

•   These non-Gaussian states allow measurements beyond the 
SQL and are produced in a probabilistic but heralded manner 

•   If multiple photons are detected, the method produces 
“Schrodinger's cat” states, which are of fundamental interest 
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Non-Gaussian states, cont'd. 

l    The entangled state thus produced is the first excited Dicke 
state along x (see above)  

l    This entangled state displays a negative Wigner function,  
which can be demonstrated via tomographic reconstruction 

l    If multiple photons are sent through the cavity, the conditional 
detection of n vertically-polarized photons produces further 
entangled states, which become Schrodinger's cat states for n of 
more than a few (see below) 

l    As long as NnHΦ2 << 1, a number nH of additional probe 
photons exiting with horizontal polarization have minimal impact 
on the state 

 

 
•   Single photons in the non-strongly-coupled regime can produce 
non-Gaussian states of atomic ensembles in a probabilistic but 
heralded way 
•   These states can be used to achieve measurements surpassing 
classical limits and are also of interest for fundamental reasons 
•   Improve the purity of the heralded Dicke state 
•   Tomographic reconstruction of the atomic Wigner function 
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Introduction 
 

•   High-fidelity optical pumping and coherent state preparation 
via rf pulses  

  

  

 

   

l   After a rotation about x, the resulting state distributions contain 
peaks with width less than the coherent-state width; thus, a weighted 
average achieves measurement precision greater than that which can 
be achieved without entanglement   

l   The resulting noise reduction compared to the SQL, (ΔSz)2 / (S/2), 
scales with detected photon number n as 1/n 

l   Even for a single detected vertical photon, measurement variance 
is improved by 3 dB relative to the SQL 

Heralded production of non-Gaussian 
states 

l   An ensemble of spin-1/2 atoms with total spin S is confined in an 
optical cavity and prepared in a coherent state along x, with 
quantization axis z determined by a magnetic field along the cavity axis 

l   A probe laser is coupled into the cavity with single-atom cooperativity 
η < 1 

l   A single vertically-polarized probe photon with detuning Δ from the 
atomic resonance (of width Γ) passes through the cavity 

l   A small Faraday rotation of the photon, Φ = SzηΓ/2Δ, occurs as it 
passes through the cavity. Upon exiting the cavity, if the photon is 
detected with horizontal polarization (with probability ~ Φ2), the atomic 
ensemble is projected into an entangled state 

l   When initialization time is small compared to measurement (or atom 
loading) time, entangled-state preparation efforts can be repeatedly and 
quickly made until success 
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•   Measure the distribution functions of the coherent state and 
the first excited Dicke state  

 

  

  

 

   

No herald photon click  

One herald photon click 
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No herald photon click  

One herald photon click 


