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Transparent ion trap with integrated photodetector

Micro mirror cavity for single ion cavity QED

Fluorescence collection sets the efficiency of state detection and the rate of entanglement generation between remote trapped
lon qubits. Scaling-up to dense arrays of ions will require efficient light collection from many ions in parallel.Various optical
elements have been used to enhance atom-photon coupling, but combining large solid angle capture with scalability has not
happened yet.

To test the contribution of the dielectric surface to
motional heating rate in the proposed ion trap-cavity
system, we fabricated a test ion trap on top of a mirror
substrate where ions can be shuttled between different

trapping zones with metal ground or dielectric™. We present a new approach in which light is collected through a transparent ion trap using a photodetector attached beneath?.
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incorporating a highly reflective
optical cavity with an apertured
planar trap from Sandia National
L aboratories:

Secular frequencies of 0.925
and 0.940 MHz were
measured using tickle
spectroscopy. lon can be

(a) Photodiode voltage and photomultiplier count rate during loading of
an ion cloud
(b) Histogram of photodiode voltages over a period of several minutes

Cavity length .l mm shuttled multiple DC electrode without ions (red), and after loading an ion cloud (blue)
Cavity waist 3.75 pm (a) ITO-4K trap: 400 nm of ITO plus 50 nm of Au on
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Sensitive compensation of micromotion in 3 dimensions for a surface-electrode ion trap using lock-in detection CMOS trap (Collaboration with Karan Mehta and Rajeev Ram)

Micromotion - the driven motion of an ion displaced from the null of the RF trapping field - broadens and shifts
atomic transitions, leaks in noise from the RF supply, and interferes with ion coupling to integrated trap elements.
Because stray electric fields readily build-up from charge deposition during ion loading or photoelectric charge
creation from laser fields!, micromotion is exacerbated as traps are miniaturized and dielectric materials introduced.

Building on previous work®4, we add sidebands to the RF voltage at Can ion traps be manufactured with the same process as an IBM processor? A ‘“trap-on-a-chip”
one of the radial trap frequencies and detect fluorescence in phase CMOS (complementary metal-oxide-semiconductor) fabrication process is the ultimate platform in

with the added voltage. The closer the ion is to the field null, the terms of reproducibility and precision for open source ion traps as well as scalability and integration

smaller the driving force, and hence the smaller  ----------——-—————- with other CMOS photonic devices.

. . . . . . . the correlated scattering rate:
Precise compensation of stray electric fields Is essential for a trapped ion qubit:

<1% broadening of Doppler-cooling transition =» need ion within ~0.7 um of RF null
<1% reduction in strength of carrier transition (for qubit rotations) =2 need ion within ~400 nm of RF null
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Resolved sideband spectroscopy on a narrow atomic transition can extract the micromotion amplitude by : : A :
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We have produced a first run of ion traps fabricated on
top of silicon waveguides, using both the top copper
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